Daily Discovery: Storytime in the Home – Over in the Grasslands Zebra Puppet Craft

Post written by Lea Mikkelsen, Early Childhood Coordinator.

Daily Discovery: Storytime in the Home – Over in the Grasslands Zebra Puppet Craft

Follow along with FCMoD’s live stream Storytime in the Home: Over in the Grasslands– On an African Savanna. Then gather your supplies to make a zebra puppet from a paper bag!

Supplies:

  • White paper lunch bag
  • Black construction paper
  • White craft paper
  • Black crayon
  • White crayon
  • Glue stick
  • Scissors
  • Googly eyes (or use paper to cut out eyes)

Instructions:

  1. Place all your supplies on a clear surface with plenty of room to work.
  2. Put the paper bag on the table with the bottom of the bag facing up (see the picture). You will want to be able to put your hand inside and move the bottom of the bag like a “mouth”.
  3. Cut out an oval shape from the black construction paper and glue it to the folded edge of the bottom of the lunch bag to make the zebra snout. Use a white crayon to draw a mouth and nostrils.
  4. Draw two triangles on the white craft paper with a black crayon. Use the scissors to cut them out and then glue them to the bag where the zebra’s ears will go.
  5. Cut out a rectangle shape from the black construction paper and cut fringe on one side for the zebra’s mane. Glue it between the ears.
  6. Tear strips of black construction paper and glue them to the bag to make stripes.
  7. Then glue the googly eyes above the snout where the eyes should go.
  8. Put your hand in your zebra puppet and imagine you are on the African Savanna!

Want to download these directions? Click here for a handy PDF!

Follow along with our Daily Discovery! Click here for all activities that you can do at home.

Educational opportunities like this are supported in part by Buell Foundation. Their support helps make access to early childhood education at FCMoD possible for everyone in our community.

Continue Reading

Daily Discovery: Bubble Science!

Post written by Hannah Curtis, Education Assistant.

Daily Discovery: Bubble Science!

Bubble baths, a carbonated summer time drink, bubble gum, or the result of the chemical reaction between baking soda and vinegar. We all know and love bubbles, but what’s up with them always being round? Come explore the science of bubbles with us and experiment with non-spherical bubbles!

Why are Bubbles Always Round?

Bubbles are simply one substance inside of another forming a sphere. These substances are usually a gas inside a liquid. The bubbles we know best are made with dish soap or glycerin and water, and are created using the CO2 gas that we naturally exhale from our lungs. You’ve probably wondered why bubbles are always round, why can’t they be square or a triangle. Well, when you blow a bubble and it begins to float in the air, this bubble will always be spherical. The water and soap molecules that make up the bubble like to be close together creating a force called surface tension creating a shape that has the smallest surface area, which happens to be a sphere, rather than a cube or pyramid.

Bubble Cage for Non-spherical Bubbles!

Supplies:

  • Pipe Cleaners
  • Straw or bubble wand
  • Water
  • Dish soap
  • Glycerin (optional)
  • Medium – large bin, bowl or container

Instructions:

  1. To create your cube bubble cage, start by cutting 6 full pipe cleaners in half to make 12 smaller pipe cleaners.
  2. Twist together the ends of four pipe cleaners to make a square. Do this again so you have two pipe cleaner squares.
  3. Now twist the remaining pipe cleaners to each corner of the two squares to form a cube. Remember a cube has 4 corners and 6 sides.
  4. Get your bubble solution ready. In a large enough bowl or container to fit your cube, fill it with water and add dish soap to make it nice a foamy. (As you test your experiment, you may need to add more soap as needed. You may also add glycerin to your solution to strengthen the bubble film).
  5. Submerge your bubble cage into the bubble solution and swish it around a few times.
  6. Remove the cage from the solution and ensure that each side of the cage has a bubble film.
  7. Now gently, but with some force move the cage from side to side. This will cause the bubble films to come together into the center of the cage. A square bubble may appear just from this movement so keep your eyes peeled.
  8. You can add in another bubble into the center with a straw or bubble wand by blowing a small bubble in the center of the cage, creating a cube bubble.
  9. This process may take a few times to get right. Experiment further and see what other bubble shapes you can create!

Want to download these directions? Click here for a handy PDF!

Follow along with our Daily Discovery! Click here for all activities that you can do at home.

Educational opportunities like this are supported in part by Fort Fund.

Continue Reading

Daily Discovery: “On One Flower” Paper Flower Craft/Descubrimiento en casa: “Sobre Una Flor:” Flor de papel

Post written by Sierra Tamkun, Learning Experiences Manager.

Daily Discovery: On One Flower Paper Flower Craft

Follow along with FCMoD’s live stream Storytime in the Home: On One Flower. Then, make your very own paper flower garden!

Supplies:

• Paper cupcake liners
• Markers, crayons, or colored pencils
• Blue and green construction paper
• Glue
• Assorted craft supplies:

  • Beads
  • Chenille stems
  • Bits of colored paper

Instructions:

1. Choose 3-4 cupcake liners to be your flowers. Color the liners to make your flowers brighter!

2. Using scissors, cut lines along the edges of your cupcake liners to make flower petals.

3. Glue your flowers onto the blue construction paper.

4. Cut stems and leaves out of the green construction paper and glue them to your blue paper sheet. If you don’t have green paper, you can draw your flower stems and leaves!

5. Decorate the center of your flower with different beads, chenille stems, or pieces of paper.

6. Draw some bugs and butterflies around your paper flower garden!

Want to download these directions? Click here for a handy PDF!

Follow along with our Daily Discovery! Click here for all activities that you can do at home.

Image credit: onelittleproject.com

Traducido por Károl de Rueda y Laura Vilaret-Tuma.

Descubrimiento en casa: Sobre Una Flor – Flor de papel

Sigue nuestro programa de transmisión en vivo “Cuentos en Casa” (Storytime in the Home) a través de las redes sociales. En esta ocasión te presentamos la historia llamada “Sobre una Flor” (versión en inglés). Después, ¡construye tu propio jardín de flores!

Artículos necesarios:

  • Marcadores, crayones o lápices de colores
  • Papel de colores incluyendo verde
  • Pegamento
  • Tijeras
  • Materiales para decorar: abalorios, brillantina, retazos de papel, etc.

Instrucciones:

  1. Para formar los pétalos de la flor, usa papel de colores y con las tijeras corta unas formas como la fotografía de arriba.
  2. Une tus pétalos con pegamento.
  3. Usando el papel verde, corta tallos y hojas para tus flores y pégalos debajo de la flor. Si no tienes papel verde, dibújalos y coloréalos.
  4. Decora el centro de las flores con abalorios, brillantina, retazos de papel o lo que quieras.
  5. Dibuja algunos insectos o mariposas para tu jardín.
  6. ¡Llena tu casa de alegría decorándola con tus flores coloridas!

¿Te gustaría descargar esta actividad? Haz clic aquí para obtener un archivo PDF.

Para encontrar actividades, ideas y mucho más descubrimiento en casa, ¡síguenos!

Educational opportunities like this are supported in part by Buell Foundation. Their support helps make access to early childhood education at FCMoD possible for everyone in our community.

Continue Reading

The Pollinator You Know: The Honeybee!

Post written by Alexa Leinaweaver, Live Animal Husbandry Coordinator.

The Pollinator You Know: The Honeybee!

When most people hear about pollination, the first thing they think of is the honeybee.

The oldest bee that scientists have found so far was in Myanmar, encased in amber and dated at 100 million years old! Bees that old were hunters, eating other insects. At some point they started visiting flowers for nectar and pollen, changing into the honeybees that we know and love.

Honeybee colonies have been kept in man-made hives since Ancient Egypt and have been important throughout human history. In addition to being delicious as a sweetener in food, honey can be used to make mead (an alcoholic drink), which works as an antiseptic. It has even been used to embalm mummies! Beeswax can be used in making many products, such as candles, soap, cosmetics, and waterproofing. Honey and bees are so important that people have named their children after bees. Deborah and Melissa both mean “bee” in different languages; Pamela derives from a word for “honey”.

When Europeans colonized the Americas in the 17th century, there were no native honeybees. Native Americans tribes at the time kept and traded other kinds of bees. European settlers brought the Western Honey Bee (Apis mellifera) along with their familiar crop plants when they moved to the Americas. As we have expanded across the planet, humans have deliberately expanded the range of the Western Honey Bee, and it is now found on every continent in the world except Antarctica.

Healthy Honeybee Colonies

In a healthy honeybee colony, you can see thousands of individual bees. Most of what you see are the worker bees, which are females that cannot lay eggs. There are usually 10,000-50,000 workers per colony. The workers care for the queen and young, defend the hive with their stingers, build comb for the young honeybees and the honey, and collect food. There are also drones, which are the male honeybees. There are about 1,000 drones in a given colony. Drones have no sting, do not forage for food, and cannot defend the hive. Their only purpose is to mate with the queen. There is only one queen bee in the colony. She is larger than all the other bees, and usually has a circle of worker bees around her (her “court”) that take care of her, bringing her food and cleaning her. The queen is the only individual who can lay eggs, and can lay as many as 2,000 eggs per day!

The worker bees leave the hive and may fly up to two miles away from their home to find food. They seek out flowers and collect nectar, which is a sugary solution that flowers produce in order to attract pollinators. The worker bee then returns to the hive and performs a dance to indicate to her fellow workers where she found food. The collected nectar is transformed into honey and may be consumed by any of the adult bees or fed to the young who cannot yet fly to find their own food. The honey can also be harvested by humans.

Honeybee colonies normally survive for several years, going dormant in the winter cold and then becoming active in the warmer months. During favorable conditions (an abundance of food), the hive will create “daughter queens,” and the old queen and much of her colony will relocate to make room for the new queens.

What is happening with the FCMoD colony?

Fort Collins Museum of Discovery has had a bee colony in the Animal Encounters exhibit for our visitors to watch and enjoy since the exhibit opened. However, our colony has collapsed several times since then. Each time we have obtained a new colony from our professional beekeeper.

There are a lot of environmental factors that can negatively affect a honeybee colony, and a lot of colonies around the world are struggling and collapsing right now. There are some pesticides that are worse for bees, especially the class of pesticide called neonicotinoids. There are diseases and parasites that can affect a colony. Climate change may also be playing a factor with bee colonies dying.

What our beekeeper thinks may be happening to the honeybee colony here at FCMoD is that the bees may have found a flower source in the area that has been sprayed with a certain kind of pesticide. They collect the nectar and pesticide, then carry it back to the colony and tell their sisters where to find more. The bees eat the poisoned nectar and honey, and die.

How can we stop honeybee colony collapse?

There are a lot of different pesticides that people use to control weeds and to get rid of bugs they don’t like. But since we do like the honeybees and the honey they make, we need to make sure that we use pesticides that won’t hurt the bees. Pesticide application can be done at night when bees are not foraging. Additionally, making sure not to apply pesticides to blooming plants will help prevent bee deaths.

Like all animals, bees need good quality and abundant food. We can plant native flowers at our homes so honeybees and all the native Colorado bees have healthy and nutritious food sources.

We should also look for ways to reduce our impact on the environment around us, improving the lives of all animals that we share our environment with. Find reusable products instead of single use items you throw away. Turn off the lights in empty rooms. Compost. Take shorter showers. Each of us can have a huge positive impact on the wild animals that live around us.

Learn more about how pesticides can affect bees and other wildlife:

EPA Tips for Reducing Pesticide Impacts on Wildlife

National Pesticide Information Center: Protecting Wildlife from Pesticides

Learn about native plants you can use in your garden:

Colorado Native Plant Society plant lists

Find out how to reduce your impact on the environment:

World Wildlife Fund’s Tips for Reducing Your Environmental Impact

Can you spot the queen bee in this picture? She is larger and a slightly different color.

The FCMoD honeybee colony, in Spring of 2018.

Photos courtesy of Alexa Leinaweaver

Continue Reading

Daily Discovery: Life Cycle of a Star Mobile/Descubrimiento en casa: Móvil del ciclo vital de una estrella

Post written by Sierra Tamkun, Learning Experiences Manager.

Daily Discovery: Life Cycle of a Star Mobile

One star, two star, red star, white dwarf star! Throughout it’s billion-year life, a low-density star, just like our Sun, goes through many changes. Learn about the different stages in a star’s life cycle, and make your own star mobile!

The Life of a Star

A star’s life cycle is determined by how big it is, or how much mass it has! The greater the mass of the star, the shorter its life. Depending on the amount of matter in the nebula where the star is born, it will either be a high-mass star, or a low-mass star, like our Sun. We’ll use this life cycle for our mobile.

But how are stars formed, anyway? As clouds of gas and dust move around in a nebula, hydrogen gas is pulled together by gravity and begins to spin faster and faster, heating up to become a protostar. When hot enough (about 15,000,000 degrees Fahrenheit!), a reaction called nuclear fusion occurs at the star’s core, pulling in more gas and dust and causing the star to stabilize and glow bright! It will continue shining in this phase as a main sequence star for millions to billions of years. Our closest star, the Sun, is currently at this stage.

Over time, hydrogen at the star’s core is converted to helium through nuclear fusion. Once the hydrogen runs out, the star isn’t able to generate enough heat to maintain its size. The core contracts, while the outer shell expands and cools, glowing red. This is known as the red giant phase. As the core continues to cool, the helium begins to fuse into carbon. Once all the helium is gone, the core collapses, and the outer layer is expelled into gases and dust, creating a planetary nebula! The collapsed core remains as a white dwarf, slowly cooling to become a black dwarf.

A high-mass star undergoes a supernova explosion after its red giant phase. If the explosion is small, it become a neutron star. But if the explosion is large, the core of the star is swallowed by its own gravity, becoming a black hole!

Supplies:

  • Paper Plate
  • Colorful beads, pom-poms, sequins, colored paper, cotton balls, pillow stuffing, etc.
  • Paints, markers, or crayons
  • Scissors
  • Glue
  • String

Instructions:

  1. Decorate your paper plate like outer space! This will be the backdrop for your star’s life cycle.
  2. Carefully use the scissors to cut your paper plate into a spiral. Ask an adult to help you if needed! Leave a small circle at the center of your spiraled plate.
  3. At the top of your spiral, attach your sting so you can hang your mobile when you’re done! You can use glue or tape, or poke a hole through the plate and tie your string to attached it.
  4. Select different objects to represent each stage in the life of your star. Pick any materials you like, or follow these suggestions:
    a. Star-forming nebula: cotton balls or pillow stuffing
    b. Protostar: small light-colored bead or sequin
    c. Main Sequence Star (like our Sun): yellow bead or pom-pom
    d. Red Giant: large red pom-pom or red paper circle
    e. Planetary Nebula: small bead and cotton balls or pillow stuffing
    f. White Dwarf: white bead or pom-pom
    g. Black Dwarf: small black bead or pom-pom
  5. Start by gluing your nebula materials at the very top of your spiral plate, around the string. Next, glue your black dwarf to the end. Evenly space out the rest of your representative objects and glue them to your spiral plate in the appropriate order.
  6. Use the string to hang up your mobile! As it spins, follow along with the different life stages of a star just like our very own Sun!

Want to download these directions? Click here for a handy PDF!

Follow along with our Daily Discovery! Click here for all activities that you can do at home.

 

Traducido por Károl de Rueda y Laura Vilaret-Tuma.

Descubrimiento en casa: Móvil del ciclo vital de una estrella

Durante los billones de años que podría durar su existencia, una estrella de densidad baja (al igual que nuestro Sol), experimenta muchos cambios. Aprende más sobre las diferentes etapas de la existencia de una estrella, y crea tu propio móvil.

El ciclo de vida de una estrella

El ciclo de vida de una estrella se determina por su tamaño o por su masa. Mientras más contenido tenga de esta, más corta resulta su vida. La cantidad de sustancia retenida por una nebulosa determina si va a nacer una estrella de masa alta o baja, como el Sol. Vamos a representar estas etapas de vida en nuestro móvil.

Pero, ¿y cómo se forman las estrellas? Mientras nubes de gas y polvo trastean en una nebulosa, hidrógeno molecular empieza a unirse por la fuerza de la gravedad. Girando más rápido, el hidrógeno se calienta y se vuelve una protoestrella. Cuando está suficientemente caliente, (¡8,333,315 grados Celsius, o 15,000,000 grados Fahrenheit!), comienza una reacción llamada fusión nuclear en el centro, atrayendo más gas y  polvo. En un corto tiempo, la estrella se estabilizará y emitirá un resplandor brillante. Esta continuará a emitir su luz por millones o hasta por billones de años. La estrella más cerca de la Tierra, el Sol, está actualmente viviendo esta etapa.

Cuando pasa el tiempo, el hidrógeno presente en el centro de la estrella se convertirá en helio a través de la fusión nuclear. Cuando el hidrógeno se haya agotado, la estrella no tendrá la capacidad de conservar la temperatura que necesita para mantener su tamaño. El centro de la estrella se contractará mientras que su capa exterior se expandirá y enfriará, brillando en un color rojo. Esta etapa de su vida se llama “la gigante roja.” Mientras se enfría el centro de la estrella, el helio se convierte en carbón. Cuando se extingue el helio, el centro se derrumba y su capa exterior expulsa gases y polvo, formando una nebulosa. El centro de la estrella sigue desprendiendo capas y enfriándose, existiendo como una “enana blanca.” Eventualmente se convertirá en una “enana negra.”

Una estrella de masa alta experimenta una explosión supernova después de ser una gigante roja. Si la explosión es pequeña, la estrella colapsa a un tamaño compacto, una “estrella neutrónica.” Si la explosión es grande, la gravedad puede comerse el centro de la estrella y convertirse en un “agujero negro.” Después de esta información tan interesante, ¿estamos listos para nuestra actividad?

Artículos necesarios:

  • Plato desechable de papel
  • Abalorios, cuentas o chaquiras, pompones, lentejuelas, papel de varios colores, bolas de algodón, relleno de almohada, etc.
  • Pinturas, marcadores y lápices de colores
  • Tijeras
  • Pegamento
  • Cordel/cuerda/hilo

Instrucciones:

  1. Decora tu plato de papel como el espacio. Este será el telón de fondo para el ciclo de vida de tu estrella.
  2. Con cuidado, usa las tijeras para cortar tu plato de papel como un espiral. Si es necesario, pídele ayuda a un adulto, dejando un centro redondo y bien pronunciado.
  3. Usa pegamento, cinta adhesiva, o haz un agujero en el centro del plato para atar un cordel.
  4. Selecciona varios objetos para representar las diferentes etapas de la vida de tu estrella. Escoge los materiales que prefieres o que tengas disponibles. Si quieres, sigue estas sugerencias:
    a. Nebulosa de vivero estelar: bolas de algodón o relleno de almohada
    b. Protoestrella: chaquira o lentejuela pequeña y de color claro
    c. Estrella de secuencia principal (como el Sol): abalorio o pompón amarillo
    d. La gigante roja: pompón grande o recorte de círculo de color rojo
    e. Nebulosa planetaria: bola de algodón, abalorio pequeño, o relleno de almohada
    f. Enana blanca: abalorio o pompón blanco
    g. Enana negra: abalorio o pompón negro pequeño
    Pega los materiales a tu espiral empezando de arriba hacia abajo y en orden. Asegúrate que estén uniformes y bien espaciados.
  5. Cuando termines de armar tu móvil, cuélgalo. Mientras gira, ¡observa las diferentes etapas de la vida de una estrella!

¿Te gustaría descargar esta actividad? Haz clic aquí para obtener un archivo PDF.

Para encontrar actividades, ideas y mucho más descubrimiento en casa, ¡síguenos!

Continue Reading

Daily Discovery: Bending Light and Eyesight

Post written by Angela Kettle, School Programs Coordinator.

Daily Discovery: Bending Light and Eyesight

Have you ever noticed that your legs look out of place when you dangle them in the pool, or that the straw in a glass of water looks bent? This is called refraction. Refraction occurs when light bends as it passes from one medium to another – for example, from the front of a glass, to the water inside, to the back of a glass. Experiment with refraction for yourself in the activity below!

Supplies:

  • Paper
  • Pencil
  • Crayons, colored pencils, or markers (optional)
  • 2+ different kinds of drinking glasses, filled with water – make sure the glasses are transparent
  • Your Observation Journal (find out how to make one here), or use another sheet of paper to record your findings

Instructions:

Part 1

  1. Draw an arrow on a sheet of paper. Note which way the arrow is facing (right, left, up, or down).
  2. Fill up a glass of water.
  3. Put your glass of water down, and put yourself at eye level with the water in the glass. Hold your drawing at arm’s length, so that you can see it through the glass. What do you notice about the way your drawing looks now? What about if you look at the image through the glass from a different angle?
  4. Repeat the experiment, this time with a different kind of glass. Does the image stay the same as the last glass, or does it change?
  5. Write or draw your findings in your Observation Journal.

Part 2

  1. Draw something new – whatever you like! Make sure that whatever you draw has certain parts facing one way or another (for example, you could draw a face with the eyes looking left, or a cat with its tail on the right side of the paper and its head on the left side).
  2. Look at your drawing through your glass of water, like you did with the arrows. What do you notice?
  3. Play around with your drawing and your glass. Try looking at the image from lots of different angles, through as many different kinds of drinking glasses as you can. How many different images can you create from your original image, just by experimenting with refraction?
  4. Record your findings in your Observation Journal. Share what you find by tagging us on social media and using #DailyDiscovery.

From Drinking Glasses to Eyeglasses

Refraction might seem like a fun magic trick, but did you know that refraction is what makes it possible for humans to see? Light is refracted as it passes through the cornea and the lens of the eye. This allows the light to come into focus on the retina, where it is converted into a message that the brain can understand.

Sometimes, though, refraction can go wrong, causing what’s called nearsightedness or farsightedness. When people are nearsighted, it means they can see things that are close to them, but not far away. Usually, this is caused by the eye being too long, causing light to focus in front of the retina. When people are farsighted, it means they can see things that are far away, but not things that are close. Usually, this is caused by the eye being too short, causing light to focus behind the retina. Both nearsightedness and farsightedness can also be caused by problems with the shape of the eye’s lens.

Thankfully, errors in refraction can be corrected with eyeglasses. First, an eye doctor (an optometrist) tests a patient’s vision to figure out her prescription (a way of measuring a person’s vision). From there, an engineer uses this prescription to make unique lenses. This lens is engineered to refract light so that it focuses in just the right spot on the retina, allowing the patient to see clearly.

Eyeglasses through the Ages

Eyeglasses have undergone many changes as engineers have figured out more efficient ways to craft them… and as fashion has changed, too! Here are a few historical photos from our Archive and a piece from our Collection at the museum! You can learn more about eyeglasses and fashion from our recent blog post, parts of which are adapted below:

The museum’s artifact collections offer a retrospective look (which is 20/20, of course) at the history of innovation in eyewear. Pince-nez spectacles, which had no earpieces and stayed in place with a nose clip were quite popular early in the 20th century but fell out of fashion as they became associated with older generations.

Want to download these directions? Click here for a handy PDF!

Follow along with our Daily Discovery! Click here for all activities that you can do at home.

References & Additional Resources

Educational opportunities like this are supported in part by Fort Fund.

Continue Reading

Daily Discovery: Storytime in the Home – The Prairie That Nature Built Black-Footed Ferret Puppet

Post written by Lea Mikkelsen, Early Childhood Coordinator.

Daily Discovery: Storytime in the Home – The Prairie That Nature Built Black-Footed Ferret Puppet

Follow along with FCMoD’s live stream Storytime in the Home: The Prairie That Nature Built. Then work together with an adult to make this Black-Footed Ferret puppet! Black-Footed Ferrets (BFFs) are an endangered species and an important part of the prairie ecosystem. You can learn more about them here!

Supplies:

  • A popsicle stick
  • Black or green beads
  • Glue
  • Craft paper (White, Black, Pink, Green)
  • Pencil
  • Scissors

Instructions:

  1. Place all your supplies on a clear surface with plenty of room to create.
  2. Ask an adult to help you find some pictures of BFFs on the internet for inspiration!
  3. Use a pencil to draw the shape of your BFFs head and ears on the white paper then cut it out. (This one is about 2 ½ inches from ear to ear and 1 ¾ inches from top of ears to chin.)
  4. Cut out a mask (an upside down U shape) and a nose (a rounded triangle shape with the point down) from the black paper and glue them down.
  5. Use the pink paper to cut out ears (half circles) and a small pointy mouth (a very small flat triangle) and glue them down.
  6. Use black or green beads for eyes. A BFF’s eyes appear green at nighttime.
  7. Glue your BFF to the popsicle stick.
  8. Cut out a round burrow for your BFF to live in! Make a small slit in the burrow to let your puppet pop in and out. Decorate your burrow with grass or other prairie features. Have fun!

BONUS: Here are some activities from Dawn Publishing that relate to The Prairie that Nature Built. Here is a coloring page! Build your own bird feeder!

Want to download these directions? Click here for a handy PDF!

Follow along with our Daily Discovery! Click here for all activities that you can do at home.

Educational opportunities like this are supported in part by Buell Foundation. Their support helps make access to early childhood education at FCMoD possible for everyone in our community.

Continue Reading

Daily Discovery: Shadows! / Descubrimiento en casa: Sombras y siluetas!

Post written by Hannah Curtis, Education Assistant.

Daily Discovery: Shadows!

The simple relationship between light and dark. Shadows are everywhere, and we all have a shadow, well sometimes! Explore the realms of natural light during the day and artificial light at night and experiment with how shadows change.

Supplies:

  • Sunlight
  • Toys or objects around your house
  • Sidewalk chalk
  • Sidewalk space
  • Flashlight
  • Paper
  • Coloring utensils

Instructions:

Natural Light Shadows

  1. During a sunny day, find space on the sidewalk to which you can draw with chalk or use paper and coloring utensils.
  2. Place a household object or a toy on the sidewalk and check out the shadow that is created. Move your object around and observe how the shadow changes.
  3. Find a spot where you will leave your object all day. Draw the shadow the object on your canvas. Check back every 30 minutes or hour to trace the shadow at that time without moving your object.
  4. At the end of the day before the sun goes down, pick up your object and see the different shadows that were created by one object over the course of the day!
  5. You can also experiment with the shadows of nearby trees or even family member.

Artificial Light Shadows

  1. After the sun sets and there is not more sunlight, you can create your own light and shadows using a flashlight or lamp.
  2. Turn off indoor house lights and direct the flashlight onto a bare wall or ceiling.
  3. Using your hands to form different shapes, you can create different shadow images onto the wall. Test out these different hand shapes or create your own shadow puppet shows.
  4. Try taping a piece of paper onto the wall, and draw the silhouette of a family member.
  5. Discover what happens when you bring objects closer to the flashlight, what about further away? How does the shadow change?

Want to download these directions? Click here for a handy PDF!

Follow along with our Daily Discovery! Click here for all activities that you can do at home.

Image Credit: Rookieparenting.com

 

Traducido por Károl de Rueda y Laura Vilaret-Tuma.

Descubrimiento en casa: Sombras y siluetas!

La relación entre la oscuridad y la luz es muy simple. Las sombras están por todas partes, y algunas veces, ¡hasta nosotros también las proyectamos! Vamos a explorar la luz natural durante el día y la luz artificial por la noche para experimentar cómo se forman las sombras y cómo se cambian las siluetas.

Artículos necesarios:

  • Luz natural
  • Juguetes/objetos que tengas en casa
  • Una acera o banqueta
  • Tiza o gis para la acera y/o utensilios para colorear
  • Una linterna o lámpara eléctrica portable
  • Papel

Instrucciones:

Para formar sombras en la luz natural

  1. Durante un día soleado, busca un sitio en una acera o banqueta donde puedas colorear con tiza o usar papel y utensilios para colorear.
  2. Pon algún objeto o juguete sobre la acera y mira la sombra que forma. Mueve y gira tu objeto para observar cómo esta cambia.
  3. Busca un lugar donde puedas dejar tu objeto todo el día, y colócalo encima de una hoja de papel. Dibuja su silueta sobre este, y regresa cada treinta minutos o cada hora para trazar una nueva silueta en ese tiempo sin mover tu objeto.
  4. Antes del anochecer, recoge tu objeto y observa la evolución de las sombras que dibujaste durante el curso del día.
  5. ¡También puedes experimentar con las siluetas o sombras de los árboles alrededor, o hasta con algún miembro de tu familia!

Para formar siluetas usando luz artificial

  1. Después del ocaso y cuando ya no haya más luz natural, podrás crear tu propia luz artificial usando una lámpara o linterna.
  2. Apaga las luces de un cuarto y enciende la lámpara dirigiéndola hacia una pared o hacia el techo.
  3. Crea diferentes formas con tus manos y colócalas al frente de la lámpara para hacer diferentes imágenes. Más abajo te damos algunas ideas para crear personajes ¡y organizar tu propio espectáculo de sombras!
  4. También podrías pegar un papel blanco sobre la pared y trazar la silueta de un miembro de tu familia.
  5. ¿Qué pasa cuando acercas o alejas tus manos de la fuente de luz? Descubre cómo cambian las sombras y siluetas, mientras te diviertes en familia.

¿Te gustaría descargar esta actividad? Haz clic aquí para obtener un archivo PDF.

Para encontrar actividades, ideas y mucho más descubrimiento en casa, ¡síguenos!

Educational opportunities like this are supported in part by Fort Fund.

Continue Reading

Daily Discovery: Be a Noise Control Engineer – Quiet that Phone!

Post written by Eisen Tamkun, Music Education Lead.

Daily Discovery: Be a Noise Control Engineer – Quiet that Phone!

Pollution. We often hear about the different kinds, from air and water to light pollution. But have you ever heard of sound pollution? Sound pollution can have harmful effects on both our health and the environment. It is the job of Noise Control Engineers to design and test noise insulation technologies and sound-adsorbent materials to help limit the harmful impacts of noise and sound pollution. Try your own hand at being a Noise Control Engineer and quiet that phone!

Supplies:

  • Smart Phone
  • Box or container large enough to hold phone and surrounding
    materials
  • Materials- A variety of should be gathered. Start with clothes, plastic bags, bubble wrap, blankets, rain jackets, and anything else that comes to mind
  • Song to play during testing
  • Pen and paper for recording

Instructions:

  1.  Once you have gathered a variety of materials it is time to begin! Start by picking only one kind of material such as t-shirts.
  2. Begin playing that rocking song you chose.
  3. Next, surround the phone with the t-shirts and place it in your container. Try to have the phone be positioned in the very center of the box with equal amount of t-shirt material on all sides. If the phone is touching one side of the container the whole experiment is off.
  4. Close the lid and listen. Did the music get quieter or not? Go ahead and record with your pen and paper the material you used (t-shirts) and how successful it was in quieting the phone on a scale of 1-10. 10 being you can’t hear the music at all and 1 being no change in sound level.
  5. Chose another material and repeat steps 1-4.
  6. Repeat step 5.
  7.  Repeat step 5 again.
  8. Now instead of using only one kind of material switch it up and try combining the materials together. Perhaps both t-shirts and plastic bags or bubble wrap and rain jackets. The possibilities are endless! Just don’t forget to record your results.
  9. Once you are finished testing each materials and combinations of materials got back and check out your recordings. Which material did the best in canceling out noise? Why do you think that is? What other materials do you think might work better? These are questions Noise Control Engineers ask themselves.

Want to download these directions? Click here for a handy PDF!

Follow along with our Daily Discovery! Click here for all activities that you can do at home.

Continue Reading

Daily Discovery: Investigating Clouds / Descubrimiento en casa: Investigando las nubes

Post written by Charlotte Conway, Public Programs Coordinator.

Daily Discovery: Investigating Clouds

NASA scientists study clouds to better understand and predict how Earth’s climate is changing. Community members can collect data about clouds and share it with scientists to help do this important research. In this activity, you will record cloud observations and learn how you can share data with researchers who collaborate with NASA!

Supplies:

  • Pencil
  • Book, clipboard, notebook, or other hard surface to write on
  • Investigate Your Sky Today activity sheet, or a blank piece of paper

Instructions:

  1. Investigate the sky! If you are able to, go outside or observe the sky from a window.
  2. Notice and observe the shapes of the clouds you see. Are the clouds puffy with clear edges, thin and whipsy, or layered and sheet-like?
  3. Then draw a detailed sketch of what you see. The sky is big. To make an accurate observation, it is helpful to orient yourself north, divide the sky into quadrants, and sketch what you see in each one. If there are no clouds today, that’s okay! That is real data too, so make a note.
  4. Now, estimate the cloud coverage. How full is the sky today? Make an estimation how much the sky is covered with clouds from 0-100%.
  5. When you are finished sketching, go inside. Write down the date and time of day that you make your observations. Write down observations about the shape, size, color, and any features you noticed about the clouds next to your drawings. Try to use some of the scientific vocabulary below to classify the clouds you observed!
  6. If you enjoyed observing the clouds, join a community of participants working with NASA to collect important scientific data about clouds. Learn more and download an app to contribute your cloud observations: observer.glove.gov.

Want to download these directions? Click here for a handy PDF!

Follow along with our Daily Discovery! Click here for all activities that you can do at home.

 

Traducido por Károl de Rueda y Laura Vilaret-Tuma.

Descubrimiento en casa: Investigando las nubes

Los científicos de la NASA estudian las nubes para entender su función y también para predecir cómo está cambiando el clima. Pero, ¿sabías que tú también puedes colectar datos sobre ellas y compartirlos con los científicos? ¡Tus observaciones podrían resultar en investigaciones muy importantes! En esta actividad, vamos a observar a las nubes haciendo varias anotaciones mientras aprendemos cómo compartir estos datos ¡con los investigadores que colaboran con la NASA!

Artículos necesarios:

  • Página de actividad incluida ¡Investiga el cielo de hoy! o papel blanco
  • Una superficie firme para escribir (como un libro, un portapapeles, o un cuaderno)
  • Algo para escribir (lápiz, pluma o marcador)

Instrucciones:

  1. ¡Investiga el cielo! Si puedes, ve afuera, o también puedes observar el cielo desde una ventana.
  2. Presta atención a la forma de las nubes. ¿Son densas con bordes claros, delgadas y tenues, o tienen capas con áreas grises?
  3. Ahora dibuja detalladamente lo que ves. ¡El cielo parece ser infinito! Para formar una observación precisa, es útil orientarse hacia el norte, dividir el cielo en cuadrantes (o cuatro partes), y dibujar lo que observas en cada uno de ellos. Si no hay ninguna nube, ¡no te preocupes! Apúntalo de igual manera porque este dato también provee información importante.
  4. Estima su cobertura. ¿Qué tan lleno está el cielo de nubes? Haz un estimado desde 0-100%.
  5. Cuando termines de anotar tus datos, apunta la fecha y hora en las cuales hiciste tus observaciones. Al lado de tus dibujos, escribe sobre sus formas, tamaño, color y otras características que hayas notado. Puedes tratar de utilizar el vocabulario científico incluido abajo para clasificarlas.
  6. Si esta actividad te ha gustado, únete a la comunidad de participantes que trabajan con la NASA para recopilar datos científicos importantes sobre las nubes. Obtén más información y encuentra una aplicación para contribuir con tus observaciones en: observer.glove.gov.

¿Te gustaría descargar esta actividad? Haz clic aquí para obtener un archivo PDF.

Para encontrar actividades, ideas y mucho más descubrimiento en casa, ¡síguenos!

Continue Reading